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Abstract

This paper reviews the literature on the mathematical models used to investigate vortex-induced
vibration (VIV) of circular cylinders. Wake-oscillator models, single-degree-of-freedom, force–decomposi-
tion models, and other approaches are discussed in detail. Brief overviews are also given of numerical
methods used in solving the fully coupled fluid–structure interaction problem and of key experimental
studies highlighting the nature of VIV.
r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Vortex-induced vibration (VIV) occurs when shedding vortices (a von Kármán vortex street)
exert oscillatory forces on a cylinder in the direction perpendicular to both the flow and the
structure. The structure starts to oscillate due to these forces if it is not fixed. For fixed cylinders,
the vortex-shedding frequency is related to the non-dimensional Strouhal number. The Strouhal
number is defined as S ¼ f vD=U ; where f v is the predominant frequency of vortex shedding. U is
the steady velocity of the flow, and D is the diameter of the cylinder. The Strouhal number is
found to be nearly constant with a value of 0.2 for a large range of Reynolds numbers. This range
is often called the subcritical range and spans the Reynolds number range of 300–2� 105 [1].
For flow past cylinders that are free to vibrate, the phenomenon of synchronization or lock-in is

observed. For low flow speeds, the vortex-shedding frequency f v will be the same as that of a fixed
cylinder. This frequency is fixed by the Strouhal number. As the flow speed is increased, the shedding
frequency approaches the vibration frequency of the cylinder f 0: In this regime of flow speeds, the
vortex-shedding frequency no longer follows the Strouhal relationship. Rather, the shedding frequency
becomes ‘‘locked-in’’ to the oscillation frequency of the cylinder (i.e., f 0 � f v). If the vortex-shedding
frequency is close to the natural frequency of the cylinder f n; as is often the case, large body motions
are observed within the lock-in regime (the structure undergoes near-resonance vibration).
It is also well known that a hysteresis behavior may exist in the amplitude variation and

frequency capture depending on the approach to the resonance range—whether from a low
velocity or from a high velocity [2]. As will be discussed later, the two branches of this hysteresis
loop are associated with different vortex-shedding modes and transition between these branches is
associated with a phase jump of � 180� [3]. Shown in Fig. 1 is a typical response in the lock-in
region of a freely vibrating circular cylinder with light damping. The hysteresis effect is clearly
seen, with higher amplitudes achieved when the reduced velocity is increased over a certain range.
Also seen is the lock-in phenomenon, with the vortex-shedding and body oscillation frequencies
collapsing into a single frequency close to the natural frequency of the cylinder. The straight line
S ¼ 0:198 is the line of constant Strouhal number.
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Fig. 1. Oscillation characteristics for a freely vibrating circular cylinder with light damping. N is the body oscillation

frequency, n is the vortex shedding frequency, Ȳ=D is the normalized maximum amplitude of oscillation measured at a

particular value of the reduced velocity, and f� is the phase angle between the fluid force and the cylinder displacement.

; vortex-shedding frequency; þ; cylinder frequency; &; phase angle; �; oscillation amplitude [5].
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The amplitude of the structural response during lock-in and the band of fluid velocities over
which the lock-in phenomenon exists is strongly dependent on a reduced damping parameter
expressing the ratio of the damping force to the excitation force. The Scruton number, Sc ¼

4pmz=rD2; is but one of many representations for this reduced damping parameter found in the
literature. As the reduced damping parameter increases, lock-in becomes characterized by a
decreasing peak structural amplitude (see, for example, Fig. 1 of Ref. [4]) and occurs over a
decreasing band of velocities (see, for example, Fig. 4 of Ref. [5]). It is also worth noting that
different phenomena are seen in structures with high and low structure–fluid density ratios mn ¼

m=rD2; where m is the cylinder mass per unit length and r is the fluid density. For systems with
high mn; the vortex-shedding frequency is entrained by the structural frequency. For systems with
low mn; it is the fluid oscillation which sets the frequency and the entrainment frequency instead
tends towards the shedding frequency f v:
While resonance in flow-induced in-line oscillations of circular cylinders is an important topic,

especially for systems with small structural damping (or small reduced damping parameters,
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depending on the mass ratio), it is not considered as an independent topic in this review. Lock-in
occurs when the in-line frequency approaches twice the Strouhal frequency (f v) and the amplitude
of the alternating force (drag fluctuations) and the response of the cylinder are an order of
magnitude smaller than those in the transverse direction [2]. Defining the reduced velocity as
Vr ¼ U=f nD; the most prominent feature of in-line oscillations of a rigid spring-mounted circular
cylinder is the existence two excitation regions separated by Vr ’ 2: symmetric vortex shedding
for Vro2; and alternating vortex streets for Vr42 [6].
The engineering implications of VIV have been well documented in the literature. Structures

such as tall buildings, chimneys, stacks and long-span bridges develop pronounced vibrations
when exposed to fluid flow. See Refs. [7–10] for studies focusing on the VIV of these structures.
The length and higher flexibility of some of these structures further aggravate the problem. In
offshore applications, VIV of long slender structures such as pipelines, risers, tendons, and spar
platforms challenge engineering designers [11]. Some examples of fundamental studies on the
nature of the VIV of marine structures are included in Refs. [12–16]. Extensive research has also
been done in the area of VIV assessment [17–19] and suppression [20,21].
In this review, both experimental and theoretical investigations of the fundamental aspects of

vortex-induced vibration of circular cylinders are discussed in some detail. The authors’ goal has
been to be thorough without being exhaustive. The main focus of this review is on the semi-
empirical models used to predict the response of the cylinder to the forces from the flow.
These models are not rigorous and generally provide minimal insights into the flow field. To
understand the flow effect on a structure, it is important that the actual flow field be described.
Consequently, a secondary focus of this review is to discuss the flow characteristics around the
cylinder. The flow field generated by flow separation around a body is a very complex fluid
dynamics problem. However, much progress has been made toward the understanding of flow
around bluff bodies. This is especially true in the field of computational fluid dynamics (CFD),
and in keeping with the primary focus of this review, only selected papers highlighting this
progress have been included.
While many reviews of the subject have been written in the past [2,5,22–25], a more

contemporary review paper focusing on semi-empirical models is needed. The importance of such
a paper follows from the fact that while VIV continues to be the subject of intensive research
efforts and is quickly evolving, many of these simplified models continue to be used today. Among
their attractions is the fact that they can be used in higher Reynolds number flows than CFD
models and they have been solved in both the time and frequency domains. In addition, an
alternative new method for the modelling of VIV is presented. The method is based on the
variational principles of mechanics and leads to a more fundamental (without ad hoc
assumptions) derivation of the equations of motion, yet remains inexorably linked to physical
data. Experimental data help to verify the model predictions, thus leading to the most
advantageous model framework.
2. Experimental studies

There are innumerable experimental studies on the vortex-induced vibration of bluff bodies,
especially circular cylinders. These studies have examined a multitude of phenomena, from vortex
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shedding from a stationary bluff body to vortex shedding from an elastic body. The vibration
caused by vortices generated by the flow past a structure depends on several factors. The
correlation of the force components, the shedding frequency, the Reynolds number, the material
damping and structural stiffness of the cylinder, and the added mass effect are just a few of these.
The literature is rich with experiments in which many of these factors have been considered,
usually by varying one or two factors and holding the rest fixed. Here, key papers highlighting the
influences of some of these factors on the structural response are discussed. Attention is focused
mostly on results pertaining to the structural response. However, since VIV is indeed a coupled
phenomena, some mention must be made of the hydrodynamics. Some factors that affect the
cylinder response, such as the surface roughness of cylinder and turbulence (intensity and scale) in
the incoming flow, are not considered here.
Before proceeding, it is worthwhile to define those variables that consistently appear in the

equations developed in this section of the review. In this way, it will not be necessary to redefine
them each time, unless introduction of a different notation is required. The outer diameter of a
circular cylinder is designated by D, the length of the cylinder by L; the free-stream velocity of the
flow by U, and the fluid density by r: The Strouhal number, S, is defined as S ¼ f vD=U ; where f v

is taken to be the natural vortex-shedding frequency of a fixed cylinder. The reduced velocity is
defined as Vr ¼ U=f nD; where f n is the natural frequency of the structure. Due to discrepancies in
the VIV literature as to how the natural frequency is defined, it will be defined on a case-by-case
basis. The natural frequency is not the same in air as in water since the latter includes the effects of
added mass. The normalized damping is defined as z ¼ csys=ccrit; where csys is the system damping,
and ccrit is the critical damping.
Bearman [5] presents a comprehensive review of experimental studies related to vortex shedding

from bluff bodies. He addresses the important question of the role of afterbody shape in vortex-
induced vibration and results pertaining to a variety of afterbody shapes are included. Bearman
first examines the mechanism of vortex shedding from a fixed bluff body. The presence of two
shear layers is primarily responsible for vortex shedding. The presence of the body does not
directly cause the vortex shedding, but it instead modifies the vortex-shedding process by allowing
feedback between the wake and the shedding of circulation at the separation points.
Another important point discussed is the absence of two-dimensionality in the vortices shed

from a two-dimensional bluff body in uniform flow. The spanwise coupling between the two shear
layers that leads to generation of vortex shedding is generally weak. This implies that unsteady
quantities related to vortex shedding (e.g., surface pressure) are not constant along the span of the
body. However, continuous regions of similar properties are characterized in terms of correlation
lengths. Small departures from two-dimensionality, in the form of a taper along the axis of the
bluff body or the presence of shear flow, leads to significant reductions in the vortex-shedding
correlation length.
Bearman also examines vortex shedding from oscillating bluff bodies. The fundamental

difference between fixed and oscillating bluff bodies is that the motion of the cylinder can take
control of the instability mechanism that leads to vortex-shedding. This is manifested in the
capture of the vortex-shedding frequency by the body natural frequency over a range of reduced
velocities. The vortex-shedding correlation length is significantly increased when the vortex-
shedding frequency coincides with the body oscillation frequency. The range of reduced velocities
over which the vortex-shedding frequency coincides with the natural frequency of the body
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depends on the oscillation amplitude. Larger ranges of frequency capture result from larger
oscillation amplitudes.
It is worth pointing out that the capture range will always include the reduced velocity value

corresponding to the inverse Strouhal number, and that maximum amplitude is attained near to
(but not exactly) this value. In other words, the reduced velocity for maximum amplitude is close
to 1=S: The location of this resonant point within the capture range depends on the shape of the
afterbody.
In the capture range, flow conditions around a bluff body change rapidly. The fluctuating lift

coefficient increases due to the improved two-dimensionality of the flow. This improved two-
dimensionality (increased correlation length) increases the strength of the shed vortices. The
increase in the lift coefficient can also be attributed to the influence of the body motion, which
manifests itself through the reduction of the length of the vortex-formation region and the
formation of stronger vortices near the base of the body. The mechanism governing the phase of
the vortex-induced force relative to the body motion has also been explored by Bearman. The
changes in phase angle through the capture range occur in a progressive and not discontinuous
fashion. In the lower end of the lock-in range, a vortex formed on one side of the cylinder is shed
when the cylinder is near to attaining its maximum amplitude on the opposite side (mode 1). As
the reduced velocity is increased, the timing of vortex shedding suddenly changes, and the same
vortex is now shed when the cylinder reaches its maximum amplitude on the same side (mode 2).
Clearly, the point in an oscillation cycle at which the cylinder receives its maximum transverse
thrust changes drastically over a narrow range of reduced velocities. Zdravkovich [26] discusses in
detail the modification of vortex shedding in the synchronization range. The existence of the two
modes, modes 1 and 2, is used to explain the existence of the hysteresis effect.
Bearman [5] discusses free vs. forced vibrations in experiments. Forced vibration experiments

offer the advantage that the reduced velocity and amplitude ratios can be independently varied. In
free vibration experiments, these two parameters are inseparable, since varying the reduced
velocity leads to changes in the amplitude ratio. The major disadvantage of forced vibration
experiments is that only a very limited range of reduced velocities and amplitude ratios studied
will actually correspond to those encountered in a free vibration. Bearman states that free and
forced vibration flows are the same, provided that one assumes that the exact history of motion is
inconsequential.

2.1. Fluid forces on an oscillating cylinder

Vortex-shedding from a circular cylinder produces alternating forces on the cylinder and it is
these forces which cause the cylinder to vibrate if it is free to do so. Experiments by Sarpkaya [27]
determine the in-phase and out-of-phase components of the time-dependent force acting on a rigid
circular cylinder undergoing forced transverse oscillations in a uniform stream. These force
components are used in the prediction of the dynamic response of an elastically mounted cylinder
in the synchronization range. The details of this aspect of the investigation are relegated to the
section of this review describing semi-empirical models. Preliminary experimental work measures
the mean fluid-induced force on the cylinder in the direction of flow for various amplitudes and
frequencies of cylinder oscillation in the transverse direction. The in-line force is found to increase
as A=D increases, where A is the transverse oscillation amplitude. For a given value of A=D; the
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in-line force reaches a maximum for D=V̄T (mathematically similar to a Strouhal number) in the
range 0.18–0.20, where T is the oscillation period and V̄ has the same meaning as U.
Furthermore, synchronization is found to occur at a frequency slightly lower than the Strouhal
frequency for a stationary cylinder, 0.21, corresponding to the range of Reynolds numbers
considered by Sarpkaya, 5000–25,000.
In considering the transverse force on the cylinder, the lift coefficient CL is expressed in terms of

an in-phase inertia force and an out-of-phase drag force. The inertia coefficient Cml characterizes
the in-phase force, while the out-of-phase force is characterized by the drag coefficient Cdl : The
drag and inertia coefficients are assumed independent of the Reynolds number in the range
considered, 5000–25,000. Synchronization is manifested by a rapid decrease in the inertia
coefficient and a rapid increase in the absolute value of the drag coefficient. The experiments also
confirm that the net effect of the cylinder–flow interaction near synchronization, for A=D o1; is
the same as for periodic flow over a cylinder at rest. This suggests that the fluid becomes the
oscillator under these conditions.
The major implication is then that use of the maximum inertia coefficient obtained by

oscillating the cylinder in a fluid otherwise at rest, Cml ¼ 1; does not give the correct results since
Cml has been shown to reach a value of about 2 near synchronization. There is a range of
Vr ¼ V̄T=D near perfect synchronization ðVr � 5Þ; where the drag coefficient is found to be in-
phase (negative) with the direction of motion of the cylinder. In this range, the drag coefficient
actually helps to magnify the oscillations, and for this reason the range is often referred to as the
negative damping region.
Gopalkrishnan [28] measures the vortex-induced lift and drag forces on a smooth circular

cylinder undergoing forced sinusoidal oscillations transverse to the free-stream. The measure-
ments are conducted in water. The lift force phase angle (defined in the same way as f� in Fig. 1) is
found to be very different for large oscillation amplitudes than for small oscillation amplitudes.
This is partially responsible for the amplitude-limited nature of VIV. The range of reduced
velocities where the cylinder is excited into oscillations by the flow (the lift coefficient excitation
region) is found to not coincide with the lock-in region. Furthermore, the excitation region is
found to be dependent on the phase, while lock-in is found to be a frequency-dependent effect.
The author also measures the lift and drag forces on a cylinder subjected to an amplitude-
modulated force causing beating motions. The presence of beating is found to cause a reduction in
the mean drag coefficient, an increase in the rms oscillating drag coefficient, and increased extent
of the primary excitation regions (vs. sinusoidal excitation). The overall magnitude of the lift
coefficient was comparable to that corresponding to sinusoidal forcing.

2.2. Three-dimensionality and free-surface effects

Three-dimensional features naturally arise in the VIV problem as the real domain is considered
as spanwise extended: elastic structures are characterized by their eigenmodes and wake flows
show secondary instabilities [29]. The transition to three-dimensionality in the near wake of a
circular cylinder is discussed by Williamson [30]. Three-dimensional structures in the wake were
found to occur for Reynolds numbers greater than about 178. These three-dimensional structures
are attributed directly to the deformation of the primary wake vortices, and were not the result of
any secondary (Kelvin–Helmholtz) vortices caused by high-frequency oscillations within the
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separating shear layers. The transition to three-dimensionality is found to involve two successive
transitions, each characterized by a discontinuity in the Strouhal–Reynolds number relationship.
These discontinuities can be seen in Fig. 2. The first discontinuity (Re: 170–180) is associated with
the transition from periodic and laminar vortex shedding to shedding involving the formation of
vortex loops. The second discontinuity (Re: 225–270) is related to the transition from the vortex
loops to finer-scale streamwise vortices. The first discontinuity is found to be hysteretic, while the
second discontinuity is not.
A more comprehensive discussion on these discontinuities (so-called mode A and mode B

secondary 3-D instabilities) and vortex dynamics in bluff body wakes in general can be found in
two review papers by Williamson [31,32]. Specifically, comparisons of measurements and
theoretical predictions of spanwise instabilities for modes ‘‘A’’ and ‘‘B’’ are given in Fig. 10 of
Williamson [32].
The question of three-dimensionality in the wake of a surface-piercing rigid cylinder mounted

as an inverted pendulum is examined in detail by Voorhees and Wei [33]. The cylinder is
characterized by a low mass ratio, mn ¼ 1:90; and high mass damping, mnz ¼ 0:103: The mass
ratio is defined as the mass of the cylinder assembly divided by the mass of water displaced by the
cylinder, mn ¼ 4m=rpD2L: The ratio of mechanical (in air) to critical damping is represented by z:
The critical damping is defined as ccrit ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðm þ maÞ

p
; where ma is the added mass. This study,

for Re: 2300–6800, found that the response characteristics of the cylinder are similar to those seen
in elastically mounted cylinders of similar mn and mnz: Strong axial flows associated with the
Kármán vortices are observed, and these flows are generally directed upwards towards the free
surface. Below the free surface, these axial flows can be predominantly attributed to the linearly
increasing oscillation amplitude along the span. Near the free surface, however, there is an equal
probability of upflow and downflow. These upflows and downflows are shown to be well
correlated to the quasi-periodic beating of the cylinder amplitude at the reference reduced velocity
Un ¼ 4:9 ðRe: 3400Þ in the synchronization range. The reduced velocity Un has the same meaning
as Vr and is defined using the natural frequency of the structure in still water. In essence, the effect
Fig. 2. (a) Variation in Strouhal number as a function of Reynolds number; (b) frequency spectra at first discontinuity;

(c) frequency spectra at second discontinuity [39].
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of the free surface is to disrupt the primary upflow mechanism and also to induce lateral spreading
of the top portions of the Kármán vortices.
Regarding free surfaces, several fundamental aspects of vortex formation are found to depend

on the gap between the cylinder and the free surface, as discussed by Lin and Rockwell [34] for the
case of a fully submerged cylinder oriented parallel to the free surface. The influence of a free
surface on the wake structure has also been investigated by Sheridan et al. [35–37].
2.3. Vortex-shedding modes and synchronization regions

The character of the vortex shedding is important in that it influences the phase of lift force and,
consequently, the energy transfer between the fluid and the body. Williamson and Roshko [38]
explore the existence of regions of vortex synchronization in the wavelength–amplitude plane.
From the outset, the Reynolds number is not treated as an independent parameter in this study.
The Reynolds number is kept within a certain range, 300oReo1000; but is never held fixed. The
amplitude ratio equals A=D: The wavelength ratio is l=D ¼ UTe=D; where Te ¼ 1=f e is the
period of cylinder oscillation in the transverse direction. The wavelength ratio is equivalent to the
reduced velocity, but has the distinct advantage that it introduces the trajectory along which the
body travels relative to the fluid.
Within the fundamental lock-in region (l=D � 5 or Te � Ts; where Ts is the period of vortex

shedding for a non-oscillating cylinder), the acceleration of the cylinder at the start of each half-
cycle induces the rolling up of each of the separating shear layers into a new pair of vortices.
Consequently, the cylinder sheds four regions of vorticity in each cycle. The authors find that,
below a critical trajectory wavelength (for a given amplitude ratio), each half-cycle results in the
coalescence of a pair like-signed vortices. Consequently, two regions of opposite vorticity are fed
into the downstream wake per cycle. The resulting formation is similar to the classic von Kármán
vortex street wake and is called the 2S mode. Above the critical trajectory wavelength, the like-
sign vortices are found to convect away from each other. Each of these vortices then paired up
with a vortex of opposite sign. The resulting formation is two vortex pairs (of opposite signs)
convecting laterally away from the centerline. This mode is called the 2P mode.
At exactly the critical wavelength, four regions are no longer formed. Only two vortices are

formed in each cycle, and the resulting shed vorticity is more concentrated than at other
wavelengths. This condition is called the resonant synchronization. The resonant synchronization
is important because it coincides (approximately) with the peak in the lift forces seen in
experimental results. The conclusion is that the larger forces are being induced by the shedding of
more concentrated vorticity. Fig. 3 is a map of vortex synchronization patterns near the
fundamental lock-in region.
The transition from the 2S mode to the 2P mode can be sudden, and it is this abrupt change in

the dynamics of the vortex wake that is a plausible explanation for the sharp changes in the
character of the body forces through the primary lock-in. The jump in the phase angle f between
the lift force and the body motion seen near the natural shedding frequency ðTe � TsÞ can be
attributed to the process of pairing in the 2P mode, which causes a sharp change in the timing of
the shedding. Since it is possible that in a certain small range of wavelength either one of the two
modes can exist, hysteresis will result. The 2P !2S (decreasing wavelength) jump occurs for a
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Fig. 3. Map of vortex synchronization near the fundamental lock-in. A=D is the amplitude ratio and l=D is the

wavelength ratio. The ‘‘critical curve’’ represents the transition from one mode of vortex formation to another. Curves I

and II represent locations where the forces on the body show a sharp jump [38].
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lower wavelength than does the 2S ! 2P (increasing wavelength) jump. This is illustrated in
Fig. 4.
A more general approach for categorizing the vortex-shedding modes is taken by Zdravkovich

[39]. Vortex shedding from a cylinder is classified as either low-speed mode or high-speed mode.
The low-speed mode is related to laminar wake instability, while the high-speed mode is related to
vortex formation and shedding. The transition state between the low- and high-speed modes is
characterized by ‘‘fingers’’ or distortions of eddy filaments in the near wake. These ‘‘fingers’’ cause
irregular vortex filaments to appear along the span. Zdravkovich also describes two modes in the
streamwise oscillation of a cylinder in an oscillatory flow. Near the synchronization frequency,
which would in this case be approximately twice the natural shedding frequency, the following
modes are found: one vortex formed per half-cycle and two vortices formed per half-cycle.
Interestingly, the transition state from the first mode to the second mode is characterized by one
vortex formed in odd half-cycles and two vortices formed in even half-cycles.

2.4. The frequency dependence of the added mass

The added mass is not the same for a body oscillating at a given frequency in a still fluid as for a
body oscillating at the same frequency in a moving fluid. The relationship between added mass
and response frequency for a lightly damped elastically mounted rigid cylinder in uniform flow
ðRe: 10426� 104Þ is examined by Vikestad et al. [40]. The cylinder is characterized by a low mass
ratio mn ¼ m=rD2 ¼ 1:3: The cylinder is allowed to vibrate in the crossflow direction only. Two
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Fig. 4. Variation of the lift force phase angle f with wavelength ratio l=D [38].
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different experiments are conducted for various values of the reduced velocity: those with no
support excitation, and those with support (external) excitation at a given frequency. The reduced
velocity Ur ¼ U=f 0D is defined on the basis of the natural frequency ðf 0Þ measured in still water
ðCa ¼ 1:04Þ: Since the natural frequency is generally not constant but depends on the added mass
ðf n ¼ f nðCaÞÞ; it is not possible to conduct experiments on the dependence of the oscillation
frequency on the added mass without fixing the reduced velocity. This follows from the fact that
the oscillation frequency is itself dependent on the reduced velocity, leading to a ‘‘circular’’ pro-
blem. The added mass coefficient is estimated from

Ca ¼ �
8

nTrpD2Lðo2x0Þ
2

Z tþnT

t

Fv €xdt; (1)

where Fv is the crossflow component of the total hydrodynamic force (minus the cylinder inertia
force), €x is the cylinder acceleration, T is the period of cylinder oscillation, o2x0 is the acceleration
amplitude and n is the number of periods over which integration is performed.
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Fig. 5. Mean oscillation frequency divided by the natural frequency in still water, f osc=f 0; shown by the sloped lines.

Mean oscillation frequency divided by the true natural frequency, f osc=f n; shown by the horizontal lines. Both are

shown as functions of the reduced velocity Ur [40].
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For experiments conducted without support excitation, two different calculations are
performed using Eq. (1): an average Ca over many periods, and a time-dependent Ca obtained
by averaging over a sequence of single periods. For Ca calculated over many periods, the authors
define the mean oscillation frequency as f osc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð €xrms=xrmsÞ

p
=2p and the true natural frequency as

f nðUrÞ ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTOT

m þ rV cylCaðUrÞ

s
;

where m is the cylinder effective dry mass, kTOT is the total stiffness of the oscillatory system, and
V cyl is the cylinder volume. The results of plotting f osc=f 0 and f osc=f n vs. Ur (Fig. 5) show no
evidence that the oscillation frequency is locked-in to one fixed natural frequency. Instead, the
oscillation frequency is the true natural frequency over a wide range of reduced velocities. In fact,
since the added mass coefficient decreases with reduced velocity (see Fig. 4(a) of Ref. [40]), the
natural frequency increases (Eq. (1)) with reduced velocity. According to the authors, this is the
reason why low mass ratio cylinders have lock-in regions that extend over a broader range of flow
speeds. Cylinders with high mass ratios show smaller increases in natural frequency with
variations in added mass. The mass ratio dependence of the added mass effect has also been
described by Khalak and Williamson [4].
For Ca calculated over single periods, the variation in the added mass from one vibration cycle

to next is shown to be considerably large. This variation is found to be least in the range of
reduced velocities Ur: 4–6. This is the range of reduced velocities for which there is strong
correlation between the added mass coefficient and the cylinder displacement. The variation in the
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added mass from cycle to cycle is also shown to be closely correlated to the cycle-to-cycle variation
in the response frequency. Again, this is attributed to changes in the added mass-dependent
natural frequency. The interested reader is referred to the journal paper for details of the
experimental results pertaining to support (external) excitation.

2.5. Dynamics of cylinders with low mass damping

Khalak and Williamson [41] study the forces and vortex-induced response of a rigid circular
cylinder in an experimental facility characterized by a very low mass ratio mn and a very low
normalized damping ratio z: The mass ratio and critical damping are defined as mn ¼ 4m=rD2L

and ccrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðm þ maÞ

p
; respectively. The added mass ma is taken to be equal to the displaced

mass of the fluid (the potential added mass coefficient CA is assumed to have a value of unity).
The combined mass-damping parameter mnz has a value of 0.013, a value at least one order of
magnitude lower than any previous study. Initially, the cylinder is held fixed (static) in a uniform
flow. The test cylinder has either a free end, which produced oblique vortex shedding, or an end
cylinder (a larger cylinder placed coaxially), which produces parallel shedding. The total
fluctuating lift and drag forces on the cylinder are measured for both end conditions as a function
of the Reynolds number. The time-averaged drag coefficient is found to be consistently higher in
the case of parallel shedding and this result is essentially independent of Reynold number. The
rms lift coefficient is also found to be higher in the case of parallel shedding, but the difference is
not Reynolds number independent. Spectral analysis indicates that the lift force is dominated by a
single peak at the shedding frequency in the case of parallel shedding, while in the case of oblique
shedding two smaller peaks are present.
The transverse response of the elastically mounted cylinder is also examined in the same

work. The response of the cylinder is found to have two distinct resonant branches.
Hysteresis results from moving between these branches and the jump between the
branches can be interpreted as a change in the vortex-shedding mode. These two resonant
branches, called the upper (very high amplitude response) and lower branches (moderate
amplitude response), can be seen in Fig. 6. Note that the reduced velocity is formed
using the natural frequency in still water f n; Un ¼ U=f nD: Also shown is data from
Feng [42] , which is obtained for a much higher mass-damping parameter of mnz ¼ 0:36:
Clearly, there is a substantial increase in both the amplitude and range of the response for
lower values of mass damping. Note that the values of mn and z did not include the effects of
added mass. Also shown in Fig. 6 are the initial excitation region and the desynchronization
region as described in Ref. [43]. The classical experiments of Feng (high mnz) show the absence
of the upper branch and only two response branches exist. The initial branch has been shown to
be associated with the 2S mode of vortex formation, while the lower branch corresponds with the
2P mode [4].
The mass ratio mn and the normalized damping z are found to independently affect the

response of the system. By maintaining the value of mnz constant, the value of mn is independently
adjusted. Lower values of mn are manifested in the form of higher response amplitudes and a
larger range of response in the lower resonance branch. However, changes to mn do not
significantly alter the characteristics of the upper branch. The level of maximum excitation in the
upper branch is found to be well characterized by the combined mass-damping parameter mnz
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Fig. 6. Maximum response amplitudes Amax as functions of the reduced velocity Un for mn ¼ 2:4 (’) and mn ¼ 248 (�)

[41].
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[44,4]. Most importantly, these effects cannot be explained by including the added mass.
Presumably, for low mass ratios the inertia of the fluid being accelerated by the cylinder is
important. A linear equation of motion is developed, with the inclusion of an inviscid added-mass
force. The failure of the added mass to explain the mass dependence of the response led the
authors to conjecture that it is instead the phase angle f which is responsible. The classical ‘‘mass-
damping’’ parameter ðmn þ CAÞz has been shown to collapse peak amplitude data over a wide
range of mass ratios. The use of the combined parameter is valid down to atleast ðmn þ CAÞz �
0:006 [4].
In a subsequent paper [43], Khalak and Williamson show that as the normalized velocity is

increased, the transition from the initial excitation region to the upper branch is hysteretic. The
transition from the upper branch to the lower branch also involves a jump, but is followed by
intermittent switching. This intermittence is clearly seen in the instantaneous phase measurements
between the lift force and the displacement in the transition region. Both of the transitions are
associated with jumps in response amplitude and frequency, but only the transition from the
upper to the lower branch is associated with a 180� jump in the phase angle. Fig. 7 is a schematic
of the differences between high-mnz and low-mnz amplitude response.
Perhaps the most interesting result is that, in the synchronization regime, the frequency of

cylinder oscillation is significantly higher than the structural natural frequency. In other words,
f n

¼ f 0=f n41 through the synchronization regime. Yet, f 0 also remains below the natural vortex-
shedding frequency of a non-oscillating cylinder in this regime (see Fig. 4 of Ref. [4]).



ARTICLE IN PRESS

Fig. 7. The two distinct types of amplitude response: high mnz and low mnz: The mode transitions are either hysteretic

(H) or intermittently switching (I) [4].
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Synchronization, as used here, is defined as the matching of the frequency of the periodic wake
vortex mode with the cylinder oscillation frequency. The departure of f n from unity is not what
would be expected from a classical lock-in. The major implication is that for cylinders with low
mass ratios, it is not possible to define lock-in as a matching (or more correctly, a near matching)
of the shedding frequency and the still water natural frequency, f n

� 1: Other investigations by
Williamson’s group at Cornell can be found in Refs. [45–47].
As part of a new paradigm to support the reduced-order analytical modeling of fluid–structure

interactions, Dong et al. [48] use high-resolution digital particle image velocimetry (DPIV) to
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measure fluid energy transport terms. The terms form part of the equation of motion for a rigid
circular cylinder with a low mass damping (mnz ¼ 0:0377) mounted like an inverted pendulum.
The equation of motion is derived using a form of Hamilton’s principle appropriately
developed for systems of changing mass. More specifically, the governing equation is formulated
using the control volume (CV) approach. Further details of this approach will be outlined in
Section 3.4. It is worth mentioning here that, except for the quasi-two-dimensionality of the flow,
no empirical assumptions are incorporated into the model. The assumption made is reasonable in
light of the fact that Voorhees and Wei [33] show that three-dimensional effects are dominant near
the free surface. The fluid energy terms which are calculated from the DPIV velocity vectors are
the time rate change of the fluid kinetic energy within the CV, the net flux of fluid kinetic energy
across the boundaries of the CV, and the work done on the CV boundaries by pressure and
viscous forces. These terms are calculated for a single value of the reduced velocity Un

corresponding to a Reynolds number of 2300. This corresponds to the resonant synchronization
regime where the cylinder response exhibits a beating behavior (i.e., large amplitude-modulated
oscillations).
The results of the study indicate that the choice of a CV is crucial to obtaining energy transport

traces that are more easily interpreted.
3. Semi-empirical models

In this review, every attempt has been made to preserve the notation of the governing equations
as given in the references. This facilitates the reader’s ability to correspond between this review
and a given paper. Work with structures undergoing vortex-induced vibration can be classified
into three main types. The first class consists of wake–body (wake–oscillator) coupled models, in
which the body and the wake oscillations are coupled through common terms in equations for
both. The second class, the single degree-of-freedom (sdof) models, use a single dynamic equation
with aeroelastic forcing terms on the right-hand side of the equation. The third class, the
force–decomposition models, rely on measurement of certain components of the forces on the
structure from experiments.

3.1. Wake–oscillator models

Several wake–oscillator models have been proposed in the literature. The models generally have
the following characteristics: The oscillator is self-exciting and self-limiting, the natural frequency
of the oscillator is proportional to the free stream velocity such that the Strouhal relationship is
satisfied, and the cylinder motion interacts with the oscillator. The latter essentially says that the
motion of the cylinder strongly affects the lift forces, which in turn influences the cylinder motion.
Also, the models assume that the flow around the cylinder is two-dimensional (i.e., the flow is fully
correlated). Consequently, the models are limited to moderate to large response amplitudes. These
models often do not include any analysis of the flow field and their value is at best to explain and
simulate experimental results. For this reason, these models are often referred to as
phenomenological. The modeler’s desire is to obtain the equations of the cylinder oscillator and
the fluid oscillator by independent means and then use them together to predict the response of
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the combined fluid–elastic system [49]. Parkinson [50] presents a comprehensive review of the
modeling of flow-induced vibrations in bluff bodies.
3.1.1. Rigid cylinders
Bishop and Hassan [51] are credited with first suggesting the idea of using a van der Pol type

oscillator to represent the time-varying forces on a cylinder due to vortex shedding. Hartlen and
Currie [52] formulate the most noteworthy of the oscillator models. In their model, a van der Pol
soft nonlinear oscillator for the lift force is coupled to the cylinder motion by a linear dependence
on the cylinder velocity. The cylinder motion is restricted to pure translation in the transverse
direction, perpendicular to both the flow direction and the cylinder axis. The cylinder is restrained
by linear springs and is linearly damped. The model is given by the pair of coupled non-
dimensional differential equations,

x00
r þ 2zx0

r þ xr ¼ ao2
0cL; (2)

c00L � ao0c
0
L þ

g
o0

ðc0LÞ
3
þ o2

0cL ¼ bx0
r; (3)

where primes denote time derivatives with respect to the non-dimensional time t ¼ ont; xr is the
dimensionless cylinder displacement, cL is the lift coefficient, o0 is the ratio of the
Strouhal shedding frequency and the natural frequency of the cylinder, o0 ¼ f 0=f n; and z is the
material damping factor. The parameter a is a known dimensionless constant. Of the
undetermined parameters a; g; and b, only two must be chosen to provide the best fit to
experimental data. This follows from the fact that a and g are related to each other by the
expression CL0

¼ ð4a=3gÞ1=2; where CL0
is the amplitude of the fluctuation of cL on a fixed

cylinder. It is worth noting that the second term on the left-hand side of Eq. (3) provides the
growth of the lift coefficient cL; while the third term on the left-hand side of the same equation
prevents its unlimited growth. These terms are important to the success of the model because the
large-amplitude oscillations characteristic of VIV are accompanied by a significant (yet finite)
increase in the lift coefficient.
With the appropriate choice of parameters, the Hartlen and Currie model qualitatively captures

many of the features seen in experimental results [53,2]. For instance, a large cylinder-oscillation
amplitude resonance region occurs when the vortex-shedding frequency is near the natural
frequency of the cylinder. The frequency of oscillation in this region is nearly constant at a value
close to the cylinder natural frequency. The hysteresis effects seen in the experimental results of
Feng [42] are also seen in the analysis of the Hartlen and Currie model by Ng et al. [53] using
multiple scales and bifurcation analyses. Fig. 8 is an illustration of the amplitude and frequency
responses of the Hartlen and Currie model with z ¼ 0:0015; a ¼ 0:02; g ¼ 2=3; a ¼ 0:002 and
b ¼ 0:4: It is evident that much of the lock-in domain is characterized by hysteresis and that there
is asymmetry in the amplitude response. These features are a direct result of the velocity coupling
term bx0

r used in Eq. (3).
Skop and Griffin [54] develop a model to resolve what they feel are inadequacies of the Hartlen

and Currie model, including the fact that the model parameters are not related to any physical
parameters of the system. A modified van der Pol equation is again employed as the governing
equation of the lift, and an equation is presented for the oscillatory motion of the body. The
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Fig. 8. Amplitude and frequency response of the Hartlen–Currie model. o is proportional to the flow velocity. Solid

lines represent stable branches of the periodic motions, while dotted lines represent unstable branches. Arrows show

jumps in amplitude and frequency corresponding to sweeps of o [53].
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equations are

€X

D
þ 2zon

_X

D
þ o2

n

X

D
¼ ðrV2L=2MÞCL ¼ mo2

s CL; (4)

€CL � osG C2
L0

�
4

3

_CL

os

� �2
" #

_CL þ o2
s 1� 4

3
H _C

2

L

h i
CL ¼ osF

_X

D

� �
; (5)

where os is the shedding frequency, CL is the oscillating lift coefficient, CL0
is the fluctuating lift

amplitude from a stationary cylinder, on is the undamped natural frequency of the spring–mass
system, and z is the sum of the structural, fluid, and externally applied damping. M is the mass of
the cylinder and m ¼ rLD2=8p2S2M is a parameter representing the ratio of the displaced mass of
fluid to the mass of the cylinder. The parameters G; H; and F are to be determined from
experimental data.
Solutions to these governing equations in the lock-in state (frequency entrainment) are sought

using the method of van der Pol, in which one seeks solutions of the form X=D ¼ aCL0
sinot and

CL ¼ ACL0
sinðot þ jÞ; where j is the phase difference between the fluctuating lift coefficient and
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the cylinder displacement. Substitution of the assumed solutions into the governing equations results
in relationships between the various model parameters. Relationships between the two independent
model parameters G and H and the physical mass and damping parameters m and z are formulated
by considering a variety of experimental results from the literature and then using a best-fit line. For
instance, the relation for G is given as log10 G ¼ 0:23� 0:19ðz=mÞ: However, the fact that the
parameters G and H are obtained at each experimental value of z and m by trial and error is an
inherent flaw in this model. The value of the third empirical constant is given as F ¼ 4Gz2mH:
Using these relationships, the authors are able to quantitatively predict the results of a different

set of resonant vibration experiments found in the literature with reasonable accuracy. The
question can, of course, be raised as to how much predictive value to assign a model which has
been ‘‘tweaked’’ from the beginning.
In a subsequent paper, Griffin et al. [55] compare the results of their own experiments with

spring-mounted cylinders in a wind tunnel and the results predicted by their wake oscillator
model. Measurements are made of the vibration amplitude and frequency under a variety of flow
conditions at Reynolds numbers between 350 and 1000. All measurements are conducted under
conditions of synchronization between the vortex-shedding frequency and the cylinder oscillation
frequency. The major conclusions of the study are as follows, with (E) denoting experimental
results, (T) denoting theoretical results and (E–T) denoting compared results:
�
 The magnitude and location of the peak resonant amplitude and the detuning between the
vibration and cylinder natural frequencies are quantitatively predicted by the model (E–T).
�
 The maximum lift occurs at a flow speed somewhat less than that which produces the largest
amplitude (T).
�
 The maximum energy transfer to the cylinder occurs at the flow speed which produces the
largest amplitude (E–T).
�
 There is a substantial change in the phase angle j between lift and the cylinder motion in the
synchronization regime (T).
�
 The energy transfer to the cylinder per vibration cycle will be positive if the lift force includes a
component which is in phase with the cylinder velocity (T).
�
 Up to a 75% increase in the drag coefficient from the fixed cylinder value is measured at a peak
amplitude of one diameter (E).

Like the Hartlen and Currie model, the Skop and Griffin model [54] contradicts several findings
by Feng [42]. Feng finds that the maximum lift and maximum cylinder displacement occurred at
the same value of flow speed. Feng also finds that the cylinder will continue to oscillate at its
natural frequency outside the lock-in range.
Iwan and Blevins [56] arrive at fluid oscillator equations by considering the fluid mechanics of

the vortex street. The model is based on the introduction of a hidden fluid variable z, which
captures the fluid dynamics effects of the problem. The equations are

€y þ 2zTon _y þ o2
ny ¼ a01 €z þ a004 _z

U

D
; (6)

€z þ K 0 ut

D
osz ¼ ða0

1 � a04Þ
U

D
_z � a0

2

_z3

UD
þ a03 €y þ a04

U

D
_y; (7)
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where zT is the total effective damping coefficient, ut is the translational velocity of the vortex
street shed from the cylinder, and K 0 is a parameter related to the Strouhal number and the ratio
ut=U : The total effective damping coefficient is the sum of the structural viscous damping and the
viscous fluid damping. All of the empirical parameters a0i and a00

i of the model but one are
determined from experimental data for fixed and harmonically forced cylinders. The model is then
used to predict the response of elastically mounted rigid cylinders.
The response of the cylinder is found to be dependent on the structural viscous damping zs; the

ratio of the shedding frequency to the natural frequency of the cylinder os=on; and the ratio of the
displaced fluid mass to the cylinder mass. This mass ratio is defined as rD2=2m: The peak
amplitude of cylinder oscillation for the resonant condition is found to depend on a single variable
called the reduced mass-damping parameter, dr ¼ 4pmzs=rD2: Note that this reduced mass-
damping parameter is identical to the Scruton number mentioned in Section 1. The model
correctly predicts the entrainment effect (or lock-in). The entrainment effect (width of the
frequency band over which lock-in persists) is shown to increase with decreased structural
damping, and increased ratio of displaced fluid mass to cylinder mass. The amplitude of the peak
resonant response is found to be inversely proportional to the reduced damping.
Landl [57] includes a nonlinear aerodynamic damping term of fifth order in his two-equation

model for vortex-induced vibrations of a bluff body. The equations are given in dimensionless
form by

€x þ d _x þ x ¼ aO2cL; (8)

€cL þ ða� bc2L þ gc4LÞ_cL þ O2cL ¼ b _x; (9)

where d is a damping parameter, a is a mass parameter, and O ¼ os=o0 is the ratio of the Strouhal
frequency to the natural frequency of the cylinder. The parameters a; b; g; and b are constants
which can be chosen to approximate a given problem.
The author believes that inclusion of the damping term gc4L _cL results in a wake oscillator model

better able to capture the hysteresis effect. The hard excitation and soft excitation regimes seen in
experimental results can be explained in terms of the three physically possible solutions of Eqs. (8)
and (9): the zero solution and two additional positive solutions. The stability and instability of
these solutions are investigated using the method of Liapounov. Hard excitation regimes of flow
velocities (or frequency ratios f s=f 0) are those where two stable states are possible for a given flow
velocity (or frequency ratio): the position of rest and a vibration of finite amplitude. Soft
excitation ranges are those where the rest position is unstable so that a finite oscillation is always
generated. Sometimes the second state in the hard excitation ranges is not that of rest, but an
oscillation with small amplitude at the same frequency as the high amplitude oscillation. This
phenomena cannot be explained by the mathematical model.
Most recently, Facchinetti et al. [29] present an excellent review of the dynamics of wake

oscillator models for 2D vortex-induced vibrations. More specifically, the authors examine three
different types of coupling terms for the action f of the structure on the fluid wake oscillator. In
general, the action term is the right-hand side of a given fluid–oscillator equation. For instance,
f ¼ b _x for the Landl model as can easily deduced from Eq. (9). Velocity coupling f ¼ A _x;
displacement coupling f ¼ Ax; and acceleration coupling f ¼ A €x are considered. Velocity
coupling is used extensively in the literature [52,56,57,54]. Displacement coupling has also been
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Fig. 9. Lock-in domains as a function of the reduced mass mn for SG ¼ 0:01 and for the three different couplings: (a)

displacement coupling, (b) velocity coupling, and (c) acceleration coupling. Comparison experimental data showing the

upper and lower bounds of lock-in is represented by n [29].
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used [3]. With these different forms of coupling, the wake–oscillator models are compared with
experimental data from the literature.
It is found that the displacement and velocity couplings fail to predict the lift phase seen in

experimental results of vortex shedding from cylinders forced to oscillate. Displacement coupling
fails to predict the lift magnification at lock-in and almost all prominent features of vortex-
induced vibration at low values of the Skop–Griffin parameter SG , while velocity coupling fails to
predict the range of lock-in for low values of SG: The Skop–Griffin parameter is a single combined
mass-damping parameter often used in the literature and is given by SG ¼ 8p2S2mz; where m is the
dimensionless mass ratio and z ¼ rs=2mOs is the structure reduced damping. rs is the viscous
dissipation in the supports, m is the mass of the structure plus the fluid added mass, and Os is the
structure natural angular frequency. Os is defined as

ffiffiffiffiffiffiffiffiffi
h=m

p
; where h is the total stiffness of the

supports. The dimensionless mass ratio is defined by the authors as m ¼ ðmf þ msÞ=rD2; where
mf ¼ CMrpD2=4 is the fluid added mass, and ms is the mass of the structure. CM ¼ 1 is the
constant added mass coefficient from potential flow theory.
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The key finding made by the authors is that the acceleration coupling succeeded in qualitatively
modeling the features of VIV considered in the paper. Fig. 9 illustrates the difference between the
lock-in domains predicted by the model equations for (a) displacement coupling, (b) velocity
coupling, and (c) acceleration coupling for a representative low value of SG ¼ 0:01: Comparison
experimental data showing the upper and lower bounds of lock-in are represented by the triangles.
The reduced velocity is defined as Ur ¼ 2pU=OsD:
3.1.2. Elastic cylinders
Several attempts have been made to extend the wake–oscillator models to elastic structural

elements such as beams and cables. Iwan [58] extends the Iwan–Blevins model to predict the
maximum VIV amplitude of taut strings and circular cylindrical beams with
different end conditions. It is assumed that a strip theory approach can be applied to extend
the equation of motion for the hidden flow variable z to the elastic structure. The strip theory
approach assumes that there is no spanwise coupling in the flow, although the theory may fail to
be accurate at small amplitudes of structural vibration since at these amplitudes the shedding
process tends to be uncorrelated in spanwise composition. The structure is assumed to possess
classical normal modes and the analysis is restricted to the cases in which the natural frequency of
one of the modes is very near the shedding frequency, while all other modal frequencies are
substantially removed from the shedding frequency. The author obtains an equation relating the
maximum response amplitude for the structure in the nth mode, Y nmax

; to various structural
parameters:

Y nmax

D
¼

a4
ffiffiffiffiffiffiffiffi
4=3

p
gn

2p3S2mrz
T
n

ða1 � a4Þ

a2
þ

a24

p2a2Smrz
T
n

" #1=2

: (10)

Interestingly enough, the details of the structure enter into Eq. (10) only through a
dimensionless mode shape parameter gn; and the product of the mass ratio mr ¼ 4m=rpD2 and
the modal damping ratio of the structure zn: z

T
n is taken to be the sum of zn and damping due to

interaction with the fluid. The ai are dimensionless model parameters.
A comparison is made of a ‘‘universal’’ maximum response amplitude with various

experimental results of maximum VIV for three structural elements: cables, pivoted rods, and
rigid cylinders. The response amplitude curves Y nmax

=D=gn are plotted as a function of mrzn using
Eq. (10) for each structural element (Fig. 10). Also shown in Fig. 10 is the empirical relationship
Y nmax

=D=gn ¼ 1=ð1þ 1:60ðmrznÞ
1:80

Þ: The product mrzn is often referred to as the reduced damping
and is almost identical to the Skop–Griffin parameter and the Scruton number discussed
previously. The theoretical results show good agreement with experiments for amplitudes of
response greater than 0.1 diameter. The data for the three different structural elements are shown
to be consistent when normalized by the mode shape parameter.
Skop and Griffin [59] start with their version of a wake–oscillator model and proceed to extend

it to elastic cylinders in an almost identical fashion. They obtain the following equation for the
maximum oscillation amplitude in the ith pure mode:

Y i;MAXðxÞ

D
¼

AMAXðSG;iÞjciðxÞjffiffiffiffiffiffiffi
I iiii

p ;
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Fig. 10. Normalized maximum amplitude of response Y nmax
=D=gn vs. mass-damping parameter mrzn for different

structural elements. ; rigid cylinder experiments; 4; pivoted rod experiments; &; cable experiments; —, theory; – –,

empirical formula. gn ¼ 1 (rigid cylinder), gn ¼ 1:291 (pivoted rod) and gn ¼ 1:155 (string or cable) [58].

R.D. Gabbai, H. Benaroya / Journal of Sound and Vibration 282 (2005) 575–616 597
where ciðxÞ is expression for the normalized mode. For example, c1ðxÞ ¼ x=L with cia1 ¼ 0 for a
pivoted rigid rod, and ciðxÞ ¼ sinðipx=LÞ for a pinned–pinned beam. AMAX is an amplitude
parameter that is a function of the modal response parameter SG;i ¼ zi=mii: mii is given by

mii ¼
r̄D̄

8pS2Mi

Z L

0

rnðxÞ½DnðxÞ�3½on

SðxÞ�
2½ciðxÞ�

2 dx; (11)

where ð�Þn denotes a dimensionless variable, on
SðxÞ is the shedding frequency, r̄ is the average fluid

density over the shedding region, D̄ is the average cylinder diameter over the shedding region, and
Mi is the effective mass in the ith mode. The integral in Eq. (11) is taken only over cylinder
sections in which shedding occurs. I iiii is defined by

I iiii ¼

Z L

0

½ciðxÞ�
4 dx

Z L

0

½ciðxÞ�
2 dx

�
:
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For example, I
�1=2
iiii ¼ I

�1=2
1111 ¼ 1:2910 for a pivoted rigid rod. In general, good agreement is

obtained with experimental data for flexible structures and cables, especially for SG o0:5 and
SG42:
Iwan [60] derives an analytical model for the VIV of non-uniform structures. In particular, he

considers elastic systems that could be described by the 1D damped wave equation (e.g., cables).
His model also allows for non-uniform flow profiles and accounts for inactive elements. Iwan
finds that, for a particular pure response mode, the equations describing the system response
reduced to those obtained for a rigid cylinder. In particular, for the nth mode,

d2ȳn

dt2
þ 2zT

n on

dȳn

dt
þ o2

nȳn ¼
a4
nn

� �
dz̄n

dt
; (12)

where a4 is a model parameter, zT
n is an effective (including fluid damping) structural damping,

ȳnðtÞ is the modal coefficient of the transverse displacement of the elastic system, yðx; tÞ; and znðtÞ is
the modal coefficient of the flow variable zðx; yÞ: nn is a parameter representing the effective system
mass and is defined as

nn ¼

Z L

0

mðxÞx2nðxÞdx

Z L

0

sðxÞx2nðxÞdx;

�

where mðxÞ is the mass per unit length of the cable including the added fluid mass and any point
masses, sðxÞ is a function specifying which portions of the cable are being excited by locked-in
vortex shedding, and xnðxÞ are the mode shapes. Eq. (12) is essentially the same equation that
governs the response of an elastically mounted rigid cylinder, with the presence of the parameter
nn and the definition of zT

n being the only differences.
The numerical results for various cable systems show that the response amplitude is

strongly affected by cable non-uniformity. The reduction of the active region, the region
over which vortex shedding occurs, and/or the addition of masses, generally reduces the amplitude
of VIV.
Later models have added further refinements to the older models just described. Dowell [49]

presents a method of constructing a fluid oscillator equation for CL; which takes into account
known theoretical and experimental behaviors of the fluid. Various self-consistency checks are
performed on the model and numerical results are compared with those obtained from the
Skop–Griffin model [54]. Several fundamental differences between the results are noted. Dowell’s
fluid oscillator is given by

€CL � e½1� 4CL=C2
L0
�os

_CL þ o2
s CL

¼ �B1ðD=V2Þy þ o2
s ½A1ð _y=V Þ � A3ð _y=V Þ

3
þ A5ð _y=VÞ

5
þ A7ð _y=V Þ

7
�; ð13Þ

where os is the fluid frequency given by the Strouhal relationship, e is a parameter to be
determined, fA1;A3;A5;A7;B1g are slowly varying functions of Reynolds number and are held
fixed, and CL0

is the peak magnitude of the limit cycle oscillation obtained from Eq. (13) with
y ¼ 0 (a fixed cylinder). CL0

is assumed to be a weak function of the Reynolds number and is
assigned typical values.
Skop and Balasubramanian [61] present a modified form of the Skop–Griffin model [59] for

flexible cylinders. The goal of the model is to accurately capture the asymptotic, self-limiting
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structural response near zero structural damping. The fluctuating lift force CL is separated into
two components: one component satisfying a van der Pol equation driven by the transverse
motion of the cylinder, and the other component which is linearly proportional to the transverse
velocity of the cylinder (the stall term). Mathematically,

CLðx; tÞ ¼ Qðx; tÞ �
2a
os

_Y ðx; tÞ;

where a is the stall parameter, os is the intrinsic vortex-shedding frequency determined from the
Strouhal relationship, Qðx; tÞ is the component of CL satisfying a van der Pol type equation, _Y is
the time derivative of the amplitude of structural motion, and x is the length variable along the
structure.
Krenk and Nielsen [3] propose a double oscillator model in which the mutual forcing terms are

developed based on the premise that energy flows directly between the fluid and structure. This
means that the forcing terms correspond to the same flow of energy at all times. In dimensional
form, the coupled equations are given by

m0ð €x þ 2z0o0 _x þ o2
0xÞ ¼

1
2
rU2DL

_w

U
g; (14)

mf €w � 2zf os 1�
w2 þ _w2=o2

s

w2
0

� �
_w þ o2

s w

� 
¼ �1

2
rU2DL

_x

U
g; (15)

where x is the structural displacement, w is the transverse motion of a representative fluid mass
mf ; zf is the fluid damping ratio, os is the undamped angular frequency of the fluid oscillator
(determined from the Strouhal relation), g is a dimensionless coupling parameter taken as a
constant, and the parameters m0; z0; and o0 have their usual meanings. The parameter w0 controls
the amplitude of the self-induced vibrations of the fluid oscillator in the case of a stationary
cylinder. Note that a quadratic fluid damping term has been included in the formulation. Energy
generation over a period begins with the negative damping (provides the self-excitation) term in
Eq. (14). This energy is extracted by means of the right-hand side (RHS) of Eq. (14). The transfer
of energy to the cylinder occurs via the RHS of Eq. (15). This energy is then dissipated by the
structural damping term.
Values for the model parameters are taken from experiments, and the model results display

branching from below and above the lock-in region. The solution in the lock-in region is unstable,
which the authors claim will lead to transition between the two modes of oscillation. However,
changes in model parameters do not show effects similar to changes in experimental parameters.
3.2. Sdof models

Proponents of this type of modeling include Scanlan and Simiu [62], Basu and Vickery [63], and
Goswami et al. [64]. Sdof models use a single ordinary differential equation to describe the
behavior of the structural oscillator.
Using the notation of Goswami et al. [64], the general form of such models is given by

mð €x þ 2zon _x þ o2
nxÞ ¼ F ðx; _x; €x;ostÞ; (16)



ARTICLE IN PRESS

R.D. Gabbai, H. Benaroya / Journal of Sound and Vibration 282 (2005) 575–616600
where m is the mass of cylinder, x is the transverse (lift direction) displacement, os is the Strouhal
frequency, and F is an aeroelastic forcing function. The influence of the wake dynamics is
incorporated into Eq. (16) via the appropriate choice of the function F. They propose a model for
the VIV of a flexibly supported cylinder that is a hybrid of the nonlinear sdof model of Scanlan
and Simiu [62] and the coupled wake oscillator model of Billah [25]. The general form of this
model is given by

mð €x þ 2zon _x þ o2
nxÞ

¼ 1
2
rU2D Y 1ðKÞ

_x

D
þ Y 2ðKÞ

x2

D2

_x

U
þ J1ðKÞ

x

D
þ J2ðKÞ

x

D
cosð2ostÞ

� 
: ð17Þ

In Eq. (17), K ¼ onD=U is the reduced frequency, Y 1ðKÞ is a linear aeroelastic damping term,
Y 2ðKÞ is a nonlinear aeroelastic damping term, J1ðKÞ is an aeroelastic stiffness term, and J2ðKÞ is
a parametric stiffness term. In essence, Y 1ðKÞ and Y 2ðKÞ represent the self-excitation and self-
limitation characteristics of the response. J2ðKÞ represents the coupling between the wake and the
cylinder, and represents the key contribution of the wake oscillator. J1ðKÞ represents the shift in
the mechanical response frequency from the zero-wind frequency f n: In other words, J1ðKÞ

represents any shift in the cylinder natural frequency from its zero-wind (resting state) value. The
parameter values (Y 1;Y 2; J1; J2) are estimated through a range of reduced velocities and damping
from experimental results [65] and the method of slowly varying parameters.
The results indicate a negligible frequency shift and consequently J1 can be taken as zero. The

remaining parameters (Y 1;Y 2; J2) are collectively found to influence the peak amplitude of the
response at lock-in, the location of the maximum response, and the band of appreciable response.
The authors do not compare the performance of their model with experimental results from the
literature.
Bearman [5] considers the following equation for a flexibly mounted bluff body (not necessarily

a circular cylinder):

M €y þ 4pN0dsM _y þ 4p2N2
0My ¼ CyrU2D=2; (18)

where y is the displacement in the transverse direction, N0 is the undamped natural frequency of
the body, M is the mass per unit length of the body, ds is the fraction of critical damping, and Cy is
the transverse force coefficient for the bluff body due to the shedding vortices. Assuming that for
large enough amplitudes the fluid force and the body displacement both oscillate at a certain
frequency nv; and that the fluid force must lead the cylinder motion by some phase angle f;
solutions of the form y ¼ ȳ sinð2pnvtÞ and Cy ¼ C̄y sinð2pnvt þ fÞ are sought. The following
relationships are obtained by replacing the assumed solutions into Eq. (18):

N0

nv

¼ 1�
C̄y

4p2
cosðfÞ

rD2

2M

� �
U

N0D

� �2
y

D

� ��1
" #�1=2

; (19)

ȳ

D
¼

C̄y

4p2
sinðfÞ

rD2

2Mds

� �
U

N0D

� �2
N0

nv

; (20)

where rD2=2M is the mass ratio, rD2=2Mds is the mass-damping parameter, and U=N0D is the
reduced velocity. Clearly, the frequency ratio N0=nv and the amplitude ratio ȳ=D depend on the
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mass ratio. As seen from Eq. (19), a large value of the mass ratio means that the frequency of
oscillation of the cylinder is appreciably different from its natural frequency. It is only for small
values of the mass ratio that N0 � Nv: Eq. (20) shows that it is that part of the fluctuating
transverse force coefficient that is in-phase with the cylinder velocity which affects the amplitude
ratio.
Chen et al. [66] present an unsteady flow theory for the structural response of a 1 dof circular

cylinder to vortex shedding. The model correctly pointed out the fluid-elastic instabilities in the
lock-in region. For low oscillation amplitudes, as the flow passes through the lock-in region, the
modal damping may become negative and the system is unstable. The amplitude continues to
grow until it becomes large enough so that modal damping values increase and the system is
stabilized.

3.2.1. Specific applications of sdof models
Cai and Chen [67] study the wind-induced large-amplitude response of a stack supported by

cable guy wires at four levels. An unsteady flow theory developed in Chen et al. [66] is used to
model the VIV of the stack. The theory is essentially an sdof model in which the effects of the
flowing fluid are characterized as the fluid damping and stiffness, and these parameters are in turn
dependent on oscillation amplitude, reduced flow velocity, and Reynolds number. For the stack
considered by itself, it is found that the third mode, with natural frequency � 2:2Hz; is most
vulnerable to vortex-shedding-induced resonance due to a large modal participation factor. The
stack vibration can then be said to be due primarily to vortex shedding at the lower portion, which
is mostly associated with the third mode. For the stack–cable system, both the stack and the
cables show characteristic peaks in their spectra at the lock-in resonances of the stack modes.
Parametric resonances (secondary peaks) in the cables are a result of stack motion at the ends of
the cable supports. In general, primary parametric resonances occur in the cables, whose natural
frequencies are approximately half the lock-in frequency (i.e., the shedding frequency) of a given
stack mode. Wind speed, cable tension, and damping are found to affect the parametric
resonances. The parametric resonances in the cables may be significantly reduced by changing
their natural frequencies through careful adjustment of the tensions.
A technique for the extraction of aeroelastic parameters from wind tunnel tests is described in

Gupta et al. [68]. These parameters are used in the sdof mathematical model for the VIV of a
structure at lock-in. The authors use Scanlan’s model,

mð€z þ 2zon _z þ o2
nzÞ ¼ 1

2
rU2D Y 1 1� �

z2

D2

� �
_z

U
þ Y 2

z

D

� 
¼ F ðz; _z;U ; tÞ: (21)

The instantaneous fluctuating lift force term, 1
2

CL sinðot þ fÞ; has been neglected in this
formulation since it is generally smaller than the aerodynamic lift caused by the motion of the
body (i.e., F ðz; _z;U ; tÞ). The unknown parameters in Eq. (21) are the linear aeroelastic damping,
Y 1; and the nonlinear aeroelastic damping, �: The linear aeroelastic stiffness, Y 2; can be easily
determined from oscillation frequency measurements. The technique described in the paper is
based on the concepts of invariant imbedding and nonlinear filtering theory and is shown to be
effective even for turbulent (noisy) conditions. Furthermore, the method works regardless of the
initial conditions of the experiments (decaying method vs. self-excited method) and in situations
where the steady-state amplitude is very small. The calculated values of the parameters Y 1 and �
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are presented as a function of the Scruton number, Sc ¼ 4pmz=rD2; for a variety of section
models, including laminar flow over a smooth cylinder and turbulent flow over a smooth cylinder.

3.3. Force–decomposition models

Sarpkaya [27] is credited with introducing the force–decomposition model. In his model, the lift
force on an elastically mounted rigid cylinder is decomposed into a fluid inertia force related to the
cylinder displacement and a fluid damping force related to the cylinder velocity. The lift
coefficient, CL; is expressed as

CL ¼ Cmlp2
UmT

D

D

V̄T

� �2

sinfotg �
8

3p
Cdl

UmT

D

� �2
D

V̄T

� �2

cosfotg; (22)

where Cml is the inertia coefficient, Cdl is the drag coefficient, T is the period of the transverse
motion of the cylinder, Um ¼ 2pA=D; and Vr ¼ V̄T=D is the reduced velocity. A is the maximum
amplitude of the cylinder motion, and V̄ is the velocity of the ambient flow. Eq. (22) can then be
incorporated into the equation of motion for an elastically mounted, linearly damped, and
periodically forced cylinder, yielding

€xr þ 2z _xr þ x ¼ rrO
2 Cml sinfOtg �

16

3p2
X rCdl cosfOtg

� �
: (23)

In Eq. (23), xr ¼ x=D; O is the ratio of the cylinder oscillation frequency to its natural frequency
f c=f n; rr is the ratio of the fluid density to the density of the cylinder rf =rc; and t ¼ ont: If the
values of Cml and Cdl corresponding to the Vr value at perfect synchronization can be determined
from experiments, then Eq. (23) can be solved, and the response of the cylinder in the
synchronization region ascertained.
Sarpkaya shows through a parametric study that the maximum response of the cylinder is

governed by a single parameter, the stability (mass-damping) parameter SG; for values of this
parameter larger than about unity. This stability parameter is defined as SG ¼ z=a0; the ratio of
the material damping and a mass ratio. For low values of the stability parameter, the mass ratio a0

and damping z affect the response separately. It is important to note that SG; as defined by the
author, can also be written as SG ¼ 8p2zS2M=rD: In this form, it can be recognized as the
Skop–Griffin parameter.
Griffin and Koopman [69] and Griffin [70] split the fluid force into an excitation part and a

reaction part that includes all the motion-dependent force components. In non-dimensional form,
the equation of motion for an elastically mounted rigid cylinder is written as

€y þ 2onzs _y þ o2
ny ¼ mo2

s ðCL � CRÞ;

where CL is the lift coefficient, CR is the reaction coefficient, os is the Strouhal frequency, zs is the
structural viscous damping, and m is a mass parameter equal to the inverse Skop–Griffin
parameter (i.e., m ¼ 1=SG). The fluid dynamic reaction (damping) force in phase opposition
with the cylinder velocity is measured as a function of incident flow speeds (Re: 300–1000),
including the lock-in speed. Also measured is the lift component in phase with the cylinder
velocity. This is the component of the lift coefficient that is associated with energy transfer to the
vibrating cylinder.
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Wang et al. [71] introduce a nonlinear fluid force model for the VIV of a single elastically
supported rigid cylinder in a uniform crossflow. The vibration of the cylinder in the transverse (y)
and streamwise (x) directions is analyzed using a 2 dof structural model. The equations of motion
are obtained from Euler–Bernoulli beam theory and the effects of vibration mode are accounted
for through a modal analysis approach. The uncoupled equations of motion are given in
dimensionless form by

€X nðz; tÞ þ 2zsnon0
_X nðz; tÞ þ o2

n0X nðz; tÞ ¼ f xnðz; tÞ=2Mr;

€Y nðz; tÞ þ 2zsnon0
_Y nðz; tÞ þ o2

n0Y nðtÞ ¼ f ynðz; tÞ=2Mr;

where z is along the axis of the cylinder, zsn is the structural damping in the nth mode, Mr is
structural mass ratio, on0 is the natural frequency of a stationary cylinder, f xnðz; tÞ is the fluid-
force coefficient in the streamwise direction in the nth mode, and f ynðz; tÞ is the fluid-force
coefficient in the transverse direction in the nth mode. Note that for an elastically mounted rigid
cylinder (n ¼ 1), f x1ðtÞ ¼ cDðtÞ � cLðtÞ _Y 1ðtÞ and f y1ðtÞ ¼ cDðtÞ _Y 1ðtÞ � cLðtÞ; where cDðtÞ is the drag
force coefficient and cLðtÞ is the lift force coefficient. It is also worth mentioning that, for a
stationary rigid cylinder, the transverse and streamwise fluid force coefficients will coincide with
the lift and drag force coefficients, respectively.
A 2 dof model is used because it has been found that streamwise oscillations have a substantial

effect on the transverse vibrations and their characteristics [72]. Higher harmonics representing
the nonlinearity in the fluid–structure interaction are accounted for in the form of nonlinear
expressions for the fluid-forcing terms. The fluid-force components of the model are obtained
from amplitude and frequency data for a freely vibrating cylinder in crossflow by carrying out a
spectral analysis of the time series of structural vibrations using the auto-regressive moving
average (ARMA) technique. Analysis of the power spectral density of the cylinder response
indicates the presence of higher harmonics in both the resonance and off-resonance responses.
Specifically, the vortex-shedding frequency and higher harmonics of the shedding frequency are
present in the resonance response. The off-resonance response shows the presence of the vortex-
shedding frequency and higher normal modes of the structure. The fluid-force components of the
model are found to be dependent on structural damping and mass ratio. The model is used to
predict the VIV of an elastic cylinder which is fixed at both ends and the results were compared
with experimental results and the sdof model of Sarpkaya. The experimental results of Goswami
et al. [65] verify the presence of both the shedding frequency and the natural frequency of the
structure in the spectrum of the cylinder vibration within lock-in and outside lock-in. The
structural response thus contains two distinct frequencies and these are manifested in the form of
a beat. This is verified by the Benaroya–Wei [73] model discussed next.

3.4. Variational approach

A semi-analytical approach for modeling vortex-induced vibration has been derived by
Benaroya and Wei [73]. This approach is based on the extension of Hamilton’s principle to
systems of changing mass and, unlike the models discussed previously, makes no a priori
assumptions about the form of the governing equations. The extended form of Hamilton’s
principle for such systems is first derived by McIver [74]. The principle of virtual work for an open
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control volume RoðtÞ having a portion of its boundary which is closed to mass transfer, BcðtÞ; and
a portion which is open to mass transfer, BoðtÞ; is

dðLÞ0 þ dW nc þ

ZZ
BoðtÞ

ðrUÞ � drðU� VÞ � nds �
d

dt

ZZZ
RoðtÞ

ðrUÞ � drdv ¼ 0: (24)

dW nc is the virtual work done by non-conservative forces and ðLÞ0 is the Lagrangian of the system
contained within the open control volume. The only virtual work contributions are those from
surface tractions on the open and closed portions of the control volume boundary. By letting the
virtual displacements coincide with the actual displacements (i.e., dr ¼ UdtÞ; an energy equation
can be recovered from the virtual work equation.
Consider next the steady viscous flow around a rigid cylinder. The control volume is chosen to

include part of the fluid arbitrarily far from the cylinder and the cylinder itself. The cylinder is
considered to be a closed control surface and if the control volume is large enough to include
other solid boundaries, these will also be part of the closed control surface. The energy equation
for this case becomes

d

dt
ðTcylinder þ V cylinderÞo þ mfluidU _U

¼

ZZ
BcðtÞ

ð�pnþ sÞ �Uds þ

ZZ
BoðtÞ

ð�pnþ sÞ �Uds

þ

ZZ
BoðtÞ

r 1
2

U2
� �

ðU� VÞ � nds; ð25Þ

where the potential energy of the fluid in the open control volume has been assumed constant, and
the potential energy per unit mass of the fluid e over the open control surface has been neglected.
�pn is the inward normal pressure and s is the shear force vector on the control surfaces. Once
expressions for the kinetic and potential energies of the cylinder have been substituted into Eq.
(25), the equation of motion for the cylinder is obtained. The expressions on the right-hand side of
the equation of motion are obtained experimentally. Further details are given in the experimental
section of this review (Section 2) and in Refs. [48,75]. Once these terms are obtained, the equation
of motion is integrated twice numerically in time to obtain displacement.
Fig. 11 is a comparison of the response predicted by the reduced-order model and those

obtained from phase-averaged cylinder position vs. time measurements. The model problem used
consists of a low-mass-damping cylinder (mnz ¼ 0:0377) mounted as an inverted pendulum.
Both the oscillation frequency and the oscillation amplitude are accurately predicted by the

model along with the beating behavior. Singularities at the points of maximum displacement of
the cylinder lead to numerical instabilities that are responsible for the clipping of the reduced-
order response.
4. Numerical methods

Numerical methods are an alternative way to solve the fully coupled problem of VIV of bluff
bodies. For flow-induced vibration, four basic issues should be considered in any numerical
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Fig. 11. Comparison of the reduced-order model response (dotted line) and the phase-averaged cylinder position vs.

time measurements (solid line) [48].
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simulation: modelling of the flow field, modelling of the structural vibration, modelling of the
fluid–structure interaction, and data analysis [76].
The flow field behind a stationary cylinder and the flow field behind a cylinder forcibly

oscillated at a specified amplitude and frequency (the forced vibration problem) have received
considerable attention from computationalists. However, the natural approach to a prediction of
VIV in self-excited vibration is a method that couples the fluid motion and the motion of the
cylinder. This coupled approach has been taken by most of the recent investigations into the VIV
problem [77]. Among the major methods used are time-marching schemes (see, for example, Ref.
[78]), direct numerical simulation (for example, Ref. [79]), and the vortex-in-cell method (VIC).
Most of these numerical simulations are usually restricted to the lower end of the Reynolds
number spectrum. However, large eddy simulation (LES) has been used to solve the forced
vibration problem at high Reynolds numbers (Ref. [80] at Re ¼ 2:4� 104) and the self-excited
problem at moderate Reynolds numbers (Ref. [77] at Re ¼ 8000). From a numerical point of
view, limits arise in the flow-field simulation of 3D domains with large aspect ratios [29].

4.1. The VIC method

The VIC method is a numerical method in which the flow field is described by a cloud of
moving vortex elements.The detailed numerical formulation of the VIC method is quite complex
and beyond the scope of this review. Details can be found in Meneghini and Bearman [81] and
Sarpkaya [82,83]. Zhou et al. [72] use the VIC method to solve the problem of 2D incompressible
flow past an elastic circular cylinder. The structure is modeled as a spring–damper–mass system
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with two translational degrees of freedom. A constant Reynolds number of 200 is chosen for all
simulations, based on the fact that at this Reynolds number the shedding vortices are still two-
dimensional and the wake is laminar. A finite-difference scheme is implemented to solve the
vorticity transport equation. The forcing terms on the right-hand side of the cylinder equations of
motion at each time step are obtained from the flow field calculations through the integration of
the pressure and wall shear stress around the cylinder surface. The reference frame is fixed with
the cylinder and, consequently, after the cylinder motion is determined at each time step, a flow
equal and opposite to the cylinder motion must be superimposed to the flow field. The frequency
characteristics of the force, displacement and velocity fields are obtained using the ARMA
technique mentioned previously. The fluid motion is then solved in the next time step accounting
for these effects. The process is repeated in an iterative way.
The results of the numerical simulations indicate that the cylinder response is strongly

dependent not only on the Skop–Griffin parameter (reduced damping), but also on the mass ratio.
It is the natural frequency of the fluid–structure system f n

n and not the structural natural frequency
f n that is very close to the natural shedding frequency f n

s when the peak structural response
occurs. The importance of the fluid damping, through the Skop–Griffin parameter, is illustrated
by noting that even when the natural frequency of the fluid–structure system is near the natural
shedding frequency, a limit-cycle oscillation (i.e., a self-limited oscillation) results. The amplitude
of the limit-cycle oscillation decreases as the Skop–Griffin parameter increases. In general, the 1
dof (transverse motion only) model is only able to qualitatively reproduce some of the results
obtained with the 2 dof model. This suggests that the streamwise motion does indeed influence the
motion in the transverse direction.

4.2. Direct numerical simulation

Evangelinos et al. [84] use direct numerical simulation (DNS) based on spectral elements to
simulate the 3D flow past rigid and flexible cylinders. The simulations are conducted at a
Reynolds number of 1000, where the flow exhibits a turbulent wake, and the cylinder is allowed
only vertical motions in the crossflow direction. The main assumptions are that there is no
structural damping and that the structural eigenfrequency is ‘‘locked-in’’ to the Strouhal number
of the corresponding stationary cylinder flow. Simulations are conducted for a rigid cylinder of
normalized spanwise length Lz ¼ 4p; where the cylinder diameter d is used as the scaling factor.
Simulations for flexible cylinders are conducted for the following cases: (1) a short cylinder of
spanwise length Lz ¼ 4p with free ends, (2) a long cylinder of spanwise length Lz ¼ 378 with free
ends, (3) a short cylinder of spanwise length Lz ¼ 4p with pinned ends, and (4) a long cylinder of
spanwise length Lz ¼ 378 with pinned ends.
Table 1 presents a summary of the results of the simulations. It is stated that the errors in the

given values are less than 10%. Note that the rms lift coefficient ðClÞrms for the freely oscillating
rigid cylinder is much larger than it is for the other cases, while the stationary cylinder has the
smallest value. The same can be said for the mean and rms values of the drag coefficients, Cd and
ðCdÞrms; respectively.
Guilmineau and Quetey [85] consider the vortex shedding from the forced oscillation of a

circular cylinder in two distinct cases: the flow induced by the harmonic in-line oscillation of a
cylinder in a quiescent body of water, and the flow induced by a transversely oscillating cylinder in



ARTICLE IN PRESS

Table 1

Summary of time- and span-averaged amplitude, lift and drag coefficients at lock-in [84]

Cylinder type ymax=d yrms=d ðClÞrms Cd ðCd Þrms

Stationary 0 0 0.12 1.04 0.02

Rigid 0.75 0.51 1.53 2.11 0.65

Short beam—free 0.93 0.51 0.83 1.86 0.48

Short beam—fixed 1.09 0.43 0.86 1.81 0.43

Long beam—free 0.61 0.36 0.93 1.75 0.51

Long beam—fixed 0.85 0.25 1.16 1.62 0.44
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a uniform flow of Reynolds number 185. In both cases, the 2D unsteady Navier–Stokes equations
are solved using a control volume approach with an algorithm (consistent physical interpolation
(CPI)) implemented to reconstruct the velocity fluxes. For the in-line oscillation study, the
Reynolds number is fixed at 100 and the Keulegan–Carpenter (KC) number is fixed at 5. The
Reynolds number is defined by Re ¼ UmD=n and the Keulegan–Carpenter number is defined by
KC ¼ Um=f eD; where Um is the maximum oscillatory velocity, n is the kinematic viscosity, and f e

is the frequency of the oscillatory flow.
At the KC number used in the study, a periodic vortex formation is observed, consisting of

vortices with symmetrical locations with respect to the line of motion of the cylinder. The in-line
force time history acting is computed and the results compared with that predicted by the
Morison equation. Agreement is generally good, except for the extremes of the time history. For
the transverse oscillation study, the mechanisms of vortex switching are examined as a function of
the ratio of the vortex shedding or excitation frequency ðf eÞ to the natural shedding frequency
from a stationary cylinder ðf 0Þ; f e=f 0: As f e=f 0 increased, the concentration of vorticity in the
wake of the cylinder moves closer to the cylinder, resulting in a tighter vortex structure (Fig. 12).
A limiting position is reached and the vorticity concentration abruptly switches to the opposite
side of the cylinder.
Willden and Graham [86] use a quasi-3D extension of the strip theory to simulate the low

Reynolds number VIV of a long flexible circular cylinder with a low mass ratio and zero damping.
In strip theory, the cylinder is divided into segments along its length and each strip is treated as an
individual cylinder for flow calculations and then the complete cylinder is reconstructed by
reassembling the segments [77]. The reduced velocity is defined as Vr ¼ U=f nD; where f n is the
natural frequency of the cylinder in air. The mass ratio is defined as mn ¼ 2m=rD2; where m is the
mass per unit length of the cylinder. The 2D simulations for the free transverse vibration of the
flexibly mounted cylinder indicate that, for very low mass ratios (mn ¼ 1 in this case), the fluid
(through the added mass) is dominant over the structure in controlling the oscillatory frequency
throughout lock-in. In other words, the oscillatory and vortex-shedding frequencies remain
locked-in to one another throughout the reduced velocity range simulated, Vr ¼ 2:5–16. This
phenomenon does not occur in systems with high mass ratios. For such systems, the vortex-
shedding frequency is entrained by the structural frequency, f v � f n: It is also seen that the body
oscillates at approximately the natural frequency of the combined fluid and structure system
throughout lock-in. In other words, f v � f N throughout lock-in, where f N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f n
2=ð1þ ma=mÞ

p
is
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Fig. 12. Instantaneous vorticity contours for Re ¼ 185 and Ae=D = 0.2. In all frames, the location of the cylinder is at

its extreme upper position. Values of f e=f 0 equal to: (a) 0.80, (b) 0.90, (c) 1.00, (d) 1.10, (e) 1.12, (f) 1.20 [85].
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the effective natural frequency and ma is the added mass. By decomposing the component of lift
coefficient in phase with the cylinder motion into contributions from pressure and shear forces, it
is found that the shear force component in-phase with the cylinder velocity effectively acts as
hydrodynamic damping, balancing the positive excitation force provided by the pressure force in
phase with the cylinder velocity. These shear and pressure forces are found to be quite large in
magnitude. Shear flow simulations past the 3D cylinder are also performed and cellular shedding
in the wake is observed. Despite the presence of the shear flow, the vortex shedding remained
correlated over a substantial length of the cylinder.
Blackburn et al. [87] present a complementary numerical and experimental study of the VIV of

a rigid cylinder at low Reynolds number flow (� 500). The fluid and mechanical (mass ratio,
mass-damping) dynamic parameters are matched in both the simulations and the experiments. 2D
flow simulations were unable to predict the nature of the multibranched plot of amplitude An vs.
SVr: The Strouhal number S for a fixed cylinder is used to normalize the reduced velocity Vr; thus
leading to the product SVr: The reasoning behind this normalization is that the 2D and 3D
simulations actually have different Strouhal numbers for the same Reynolds numbers, 0.225 and
0.205, respectively. 3D flow simulations generate results similar to the experimental results, in
spite of the fact that the cylinder end boundary conditions are not exactly the same as in the
experiments and the axial resolution and extent of the simulations are less than desirable. The 3D
simulations coincide with the experimental results in the prediction of a 2P-type vortex-shedding
mode for a representative SVr value of 1.27 along the lower branch of the response curve. The 2P-
type vortex-shedding mode is first reported in Williamson and Roshko [38] and corresponds to
two pairs of counter-rotating vortices per shedding cycle.
Blackburn and Henderson [88] conduct a detailed numerical study of the phase change of

vortex shedding with respect to cylinder motion commonly observed in experimental studies of
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flows past stationary and oscillating cylinders. By phase change, it is meant the change in the
phase angle f between the cylinder cross-flow displacement yðtÞ and the fundamental harmonic of
the lift force FL: The Reynolds number is fixed at 500 and the oscillation amplitude of the cylinder
is fixed at ymax=D ¼ 0:25: Experimental studies have indicated that the timing of vortex formation
switches phase by approximately 180� over a narrow band of structural oscillation frequencies in
the primary lock-in regime. In other words, there exists a certain frequency range such that, for a
fixed point in the cylinder motion cycle, the side of the cylinder where the first vortex is formed
will change abruptly. The switch is found to affect the sign of the mechanical energy transfer
between the cylinder and the surrounding fluid, as well as the phase of the vortex-induced forces
on the cylinder. Furthermore, the timing of this phase shift is strongly affected by the frequency
ratio F ¼ f 0=f v; where f 0 is the cylinder cross-flow oscillation frequency and f v is the natural
shedding frequency from a fixed cylinder. The dimensionless form of the mechanical energy
transferred from the flowing fluid to an oscillating cylinder per motion cycle is given as

E ¼ 1
2

I
ðCL daþ adCLÞ; (26)

where CL is the lift coefficient and a is an instantaneous dimensionless displacement variable
aðtÞ ¼ yðtÞ=D: Positive values of E correspond to work done on the cylinder, while negative values
correspond to work done on the surrounding fluid. It can be shown that E is positive when f is in
the range 0–180�: The sign of E is ascertained from the phase plane plot of yðtÞ vs. CL; which is in
the form of a limit cycle during frequency entrainment (lock-in). The sign of E is positive if the
direction of traverse in the limit cycle is clockwise. By considering the range 0:75oFo1:05 and
calculating E for each increment (or decrement) DF from two initial points F ¼ 0:875 and F ¼

0:975; a bifurcation solution with hysteresis effects is found in the transition to these states.
Four solution branches corresponding to periodic shedding states are observed: two branches

associated with Kármán street wakes (K1 and K2), a branch characterized as the asymmetric two-
cycle mode (A1), and a branch characterized as the asymmetric synchronized branch (A2). The K1

branch has negative values of E at lower frequencies and progresses to positive values at higher
frequencies. The A1 and A2 branches always have positive values of E: The K2 branch always has
negative values of E: The transitions between the branches is rather complicated and cannot be
easily categorized. Of interest is a band of frequencies 0:905oFo0:95; termed the weakly chaotic
oscillator range, in which the sign of E changes between the K1 and K2 branches. In this band, the
sign of E and the phase angle f undergo transition from positive to negative values in a
discontinuous fashion. Fig. 13 shows the different branches in the F–E plane. It is suggested that
the relaxation oscillator behavior seen in this range is indicative of different mechanisms vying for
control of the wake dynamics. The competing mechanisms are the relative magnitudes of the
pressure-gradient and the surface-acceleration vorticity generation. Several tests are performed to
test the validity of this hypothesis, and results presented do lend validity to this claim.

4.3. The finite element method

Barhoush et al. [89] use an approach based on the finite element method and Scanlan’s vortex-
shedding empirical model to analyze the VIV response of plane frame (2D) structures. The
equations of motion for a plane frame element, having 2 dof per node, are obtained from
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Fig. 13. Energy transfer coefficient E as a function of the frequency ratio F for periodic wake flows. �; Kármán street

mode, branch K1; &; Kármán street mode, branch K2; ; asymmetric two-cycle mode, branch A1; n; asymmetric

synchronized mode, branch A2; frequency ratios for aperiodic regimes are shown hatched. Inset shows paths followed

during sweeps of the frequency ratio F :Note the bifurcations between the different wake modes [88]. Reprinted with the

permission of Cambridge University Press.
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Hamilton’s principle. The equations of motion for the plane frame element are obtained in terms
of the displacements and rotations at its nodes. The virtual work of the non-conservative forces
acting on the element consists of two components: (1) the mechanical damping, which is
represented by a velocity-dependent force; and (2) the aerodynamic damping, which is assumed to
have a form similar to that found in Scanlan’s model [62]. See Eq. (21).
The response of the structure is obtained by adding up the contributions of each element. A

good representation of steady-state vortex-induced vibration behavior is obtained. The extension
of the approach to space frame elements (elements of a 3D structure) is readily made and is
discussed in the paper.
A finite element analysis of the VIV of a circular cylinder at Reynolds numbers in the range of

100–140 is performed by Nomura [90]. Similarly, Mittal and Kumar [91] use the stabilized space-
time finite element method to investigate the VIV of a circular cylinder mounted on lightly
damped springs. The cylinder is allowed to vibrate in both the in-line and in the cross-flow
directions at Re ¼ 325: The behavior of the oscillator for various values of the structural natural
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frequency (Fs), including those that are sub- and superharmonics of the natural vortex shedding
for the stationary cylinder (F0), is investigated. In most cases, the trajectory of the cylinder is
found to correspond to a Lissajou figure (Fig. 8). For cylinders with effective material density
much smaller than that of the surrounding fluid, a region of slight detuning is found to exist in a
certain range of Fs values. In this region, the vortex-shedding frequency of the oscillating cylinder
does not exactly match the structural frequency. This phenomenon is called ‘‘a soft lock-in’’ by the
authors and the detuning is found to vanish if the cylinder density is made much larger than the
mass of the surrounding fluid. Similar behavior has been found by the authors in simulations
conducted at Reynolds numbers in the range 103–104 [92].
In a numerical study by Wang et al. [93], a slender elastic cylinder with fixed ends (aspect ratio

� 58) in a uniform cross-flow (sub-critical Re) is modeled as an Euler–Bernoulli beam. The
normal mode method is used to analyze the spanwise structural response in the lift and drag
directions. The flow field is resolved using the finite element method. A mesh re-mapping
procedure is incorporated to deal with the moving boundary problem which characterizes the free
vibration of the cylinder. The results indicate that fluid–structure interactions mainly affect the
phase relation between fluid forces and the corresponding vibration of the cylinder. Furthermore,
these effects vary along the span of the cylinder.
5. Concluding remarks

A variety of issues concerning the vortex-induced vibration of circular cylinders have been
discussed. Selected papers highlighted the influence of vortex-induced unsteady forces on the
cylinder, including the phase of the forces relative to the body motion. The phenomenon of lock-
in has been discussed and the factors that influence the response of the cylinder (mass and
damping) have been listed. The mathematical modeling of vortex-induced oscillations, using
nonlinear oscillators and flow-field simulations, has been described. The development in the
techniques used to attempt to solve the fully coupled problem, based on the fundamental
principles of fluid dynamics and the theory of elasticity, have been illustrated with a few examples
from the literature.
In the future, research should be directed towards the better prediction of the dynamic response

of structures to VIV. VIV is an inherently nonlinear, self-regulated, multi-dof phenomenon.
Vortex shedding gives rise to complex forces. This is only one of a multitude of factors that
continues to make VIV prediction in industrial applications substandard. The prediction of VIV
requires that one weigh the relative magnitudes of each of these parameters and then try to predict
their contribution to the structural response. In the words of Sarpkaya [94], ‘‘They [industrial
applications] continue to require the input of the in-phase and out-of-phase components of the
transverse force, in-line drag, correlation lengths, damping coefficients, relative roughness, shear,
waves, and currents, among other governing and influencing parameters, and thus the input of
relatively large safety factors’’. Part of the problem is that different models for the prediction of
VIV give different results. As an example, Larsen and Halse [95] find large discrepancies in the
predicted response of slender marine structures to vortex shedding when seven different models
(e.g., DNV, MARINTEK, SHEAR7) were applied to the same structures under the same
environmental conditions. Some of these discrepancies can be attributed to the fact that many of
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these models use experimentally obtained values for the flow inputs (e.g., added mass, lift
coefficients). Perhaps the advances in the computation of flow–structure interaction (DNS, for
example) will one day lead to a better solution. For now, this approach remains hindered by the
fact that Reynolds numbers of most industrial applications cannot be simulated.
Better prediction of VIV will hopefully lead to better suppression. However, suppression is in

itself a tricky matter. For example, Bearman and Brankovic [96] find that passive suppression
devices (strakes and bumps in this case) do not completely eliminate VIV in cylinders with low
combined mass and damping, as is often the case in marine applications, this in spite of the fact
that helical strakes are used successfully in wind engineering to suppress VIV in chimneys and
other slender structures. In addition, it is not possible to completely suppress the vortex-induced
vibrations of structures in water by mass redistribution alone [21]. Active control (both open and
closed loop) of VIV is an area of significant research activity [97–99] and its outlook looks
promising.
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